Showing posts with label Tips. Show all posts
Showing posts with label Tips. Show all posts

Basement Floor Slab - Horizontal Crack Repairs using Sika Crack Fix

The past three weeks we've been upgrading the basement foundation wall insulation - so I've had to move all the shelving and storage units away from the basement walls to get at the walls. Since all the heavy lifting was done to move everything away from the walls, I decided it was an excellent opportunity to give the concrete floors a coat of paint. Prior to painting, it was the perfect time to repair the horizontal cracks in the concrete slab - so I've been at this in parallel with the insulation job.

Final Crack Repair - Sika Crack Fix
Following some reasearch - I've settled on using Sika Crack Fix - a structural epoxy that is very fluid and can penetrate very narrow cracks, and is also commonly available at my local home improvement stores. It's not inexpensive, at about $20 a tube, but if I can get a permanent repair to these slab cracks I'll be satisfied.

Sika Crack Fix - Comes in a Cartridge designed for a standard small caulking gun, with two mixing tips. 

Cartridge installed in the caulking gun
The first step to a smooth repair is to open up the top of the cracks with an angle grinder and a concrete wheel. Create a groove at the top of the crack - 2 to 4 mm wide - and relatively straight - this will create a channel that will make the application of the epoxy much easier, and create a small well for the epoxy to pool before it penetrates the crack. This is the key to a neat, easy crack repair. When creating the groove with the grinder, use your shop vac with the hose end held right next to the grinder wheel, this will pick up 95% of the dust, and help keep your work area clean.

Groove the top of your cracks with an angle grinder prior to application of the epoxy
Once the cracks have been grooved, you can start applying the epoxy. Since I have no way of plugging the crack at the bottom of the slab - the epoxy is so thin it will run right down through the crack, and out the bottom of the slab. To minimize waste, I would apply one or two tubes of Sika Crack Fix to about 25 feet of prepared cracks - and allow the epoxy to penetrate the cracks. I would then wait 24 hours and repeat the process - to allow the crack to shrink in width over subsequent applications and minimize the leakage out the bottom of the crack.

Once the crack is filling up - you'll find that the epoxy will run horizontally as well - moving down any slope in the floor slab. This isn't a problem, it helps to distribute the epoxy fully through the crack, but you may find that some epoxy will pool out of the crack on the surface of the floor. The hardened epoxy is so hard that it is difficult to remove by scraping or sanding. After about 4 to 6 hours following the application of the epoxy - the epoxy will set up and start to harden - yet it will still be soft enough to scrape off any unwanted excess. This is an excellent time to level out any sections where the epoxy is convex - and extending above the surface of the surrounding floor. 

Completed crack repair - where the epoxy has been scraped flat before completely hardening. 
The Sika Crack Fix can also be used to fix broken surfaces - I have some small areas around a floor sump where the concrete surface has chipped away slighly exposing some aggregate. I've been using the Sika Crack Fix to smooth these areas prior to painting.

Wider surface repairs using Sika Crack Fix - This section is still slightly concave, and will require a subsequent application of Crack Fix to get it flat. 
I've used about 10 tubes of the Sika Crack Fix in about 40 feet of narrow cracks averaging about 1mm wide. That's a bit expensive at $20 a tube - but if it does a "permanent" long term repair - I'll be happy with that. It looks like the epoxy will have to be roughened prior to painting with sandpaper - if left to settle on its own it hardens very smooth - almost glass like, and I'll be looking for good adhesion with the floor paint. I'll post on the floor paint process later, as I get that task done.

Now - for a few other points now that I've almost finished all the crack repairs in the basement.

Sometimes, the part A and part B doesn't mix correctly, and won't harden in the crack. This may happen at the start of the tube, at the end of the tube, or if you interrupt application and restart with a new mixing tip. The instructions for the product suggest pouring out product in a waste container until all the air bubbles are gone - this ensures the product being applied has a proper mix of both components - and is very important. When you get to the end of the tube, and the mixing tube starts spouting bubbles - stop there and discard the tube. I've had a few instances where the product hasn't mixed correctly, and the epoxy stays sticky and doesn't harden. You can use a putty knife or rag to scrape off as much of this material as possible, and then finish cleanup with a solvent. The product guide recommends "Sika Equipment Cleaner" to clean up unmixed or uncured epoxy.  This product contains Xylene according to the MSDS, and so does the brake cleaner that I had in my garage, so I've cleaned some of this unmixed epoxy with a small amount of brake cleaner. (Try getting some "Sika Equipment Cleaner" on a Sunday morning....)

Unmixed epoxy cleaned up with Brake Cleaner, ready for re-application of mixed Crack Fix
Another issue that I ran into is that the Crack Fix is so watery when applied, it flows with any slight slope in the concrete slab. I have a few cracks that extend to a floor sump, with a slight grade. The crack fix kept on flowing along the crack, and leaving a trough in the crack, and puddling out of the crack at the bottom of the slope. The solution to this is to shoot some Crack Fix into a small plastic container, and let it set for 2 to 3 hours. Once the product starts setting up, and not flowing, apply it to the crack with a putty knife. It should stay in the crack without flowing down. Check and retrowel with the putty knife after 30 minutes.

Crack Fix setting up in a plastic cap, almost ready to apply.
Finally, in preparation for painting, I've found that a belt sander is really the best way to level out cracks. I had always managed to get by without a belt sander until now. I went out, purchased an inexpensive Skil 3 x 18 sander, and a few belts of 80 grit. This machine works great for levelling out the cracks and getting a nice flat surface equal with the concrete prior to painting. 

Skil 7510-01 3 x 18" belt sander, with vacuum attached. Perfect for levelling epoxy Crack Fix.
The sander accepts a 1 1/2" shop vac hose for dust collection, which also helps remove heat from the motor during operation. I highly recommend operating this tool with a vacuum attached. It's really efficient at levelling out cracks.

Epoxy filled cracks levelled with the belt sander, ready for painting. 
This has been a good job to get done - so far, I've used about a dozen tubes of Crack Fix. It's not inexpensive, but compared to bringing in a conctractor to replace your basement floor slab, this is an excellent way to prolong the life of your basement floor.

Getting near the end of the job. Perimeter of the floor - painting completed. Now filling all the cracks in the center of the floor, almost ready to complete the painting. 









Share:

Upgrading Basement Insulation - Touch-N-Foam System 600 Polyurethane Spray Foam Kits

Our original plan for sealing the gap between the slab and the wall was to apply spray foam to the bottom 2 feet of the walls - only where there wasn't any existing fibreglass batt insulation, in the finished part of the basement, and the complete walls in the utility room. Based on the perimeter of the basement, and the yield of the Touch-N-Foam System 600 kit - up to 600 board feet (600 feet long, one foot wide, one inch thick) I figured with two the of the System 600 kits I would be able to get a 2 inch thick minimum coverage.

One inch thick application of Touch-N-Foam System 600
The instructions for the kit, the videos that demonstrate the kit, and the packaging all reinforce the importance of three temperatures for optimum yield - the temperature of the cylinders (minimum 21C, 70F), the temperature of the air (minimum 16C, 60F), and the temperature of the suface the foam is to be applied on (minimum 16C, 60F). When spraying basement concrete walls in late winter - achieving the minimum temperature of the concrete was a challenge. I installed a 2000W convectair in the utility room to supplement the central forced air furnace. My furnace has a zoning system, so I closed the zones for the main floor and upper floor of the house, and forced recirculation only in the basement. I disabled the heat pump to force the electric backup heat in the furnace to run, and I had this run for 2 days straight to try to heat up the concrete walls. I just managed to get the concrete to 16C in most places, some places a bit higher, some places a bit lower.

A note of caution before getting into the details - these kits are recommended for professionals - and improperly mixed or applied foam can cause poor results - in the worst case - you may be removing and cleaning up improperly applied foam. I'm not recommending that you follow this example - I'm just trying to demonstrate my experience. Unless your completely confident in your abilities - take a second thought and strongly consider hiring a professional, licensed contractor.

I made sure to take care of all the preliminary preparations ahead of the day that I was going to apply the foam. All the void spaces were vacuumed out with a shop vac - removing all the cobwebs and loose construction debris to optimize the bonding of the foam to the concrete. Electrical cables that were unsupported in the void behind the stud wall were fixed to the studs so they would not fall into the gap at the bottom of the wall between the slab. I also bundled the wires as much as possible, to have fewer interferences to deal with when spraying foam. All the electrical outlets were protected with plastic bags and tape.

Protect your outlets.

Protect anything in front of your walls - these are electrical cables and irrigation lines that run into the back yard

Buy a couple of rolls of painters plastic - it will come in very handy to protect from overspray

The foam is shipped in two cylinders, a part A and part B, and the chemicals mix in the replaceable nozzle of the gun. If you pause for more than 30 seconds, the chemicals start to set in the nozzle, and you have to replace the nozzle. Since I had to work around the perimeter of my basement, I decided to make a simple dolly on four casters to support the cylinders, so I could move the cylinders quickly and easily.

Four Casters Installed on top of an Ikea Ivar Shelf Make an ideal foam kit dolly
These castors are inexpensive, can be picked up at any home improvement store
Once the drywall was off all the walls in the utility room, I got an early start on a weekday once everyone was out of the house. The application guide recommends adequate ventilation, so I opened a door passage to the garage, and opened the garage door to allow some air circulation when spraying.

I went with the recommended personal protective equipment (PPE) - a painters tyvek suit, the safety glasses supplied in the kit, and a half mask organic cartridge painting respirator by 3M.

Image result for 3m half mask respirator
3M Half Mask Organic Cartridge Respirator

I watched the instruction videos a few times to familiarize myself with the operation of the kits and the application of the foam, and followed the instructions carefully. I won't repeat the instructions here - the videos are excellent and easy to follow.

Everything laid out and ready to start - Foam Kit with hoses and gun attached, scrap cardboard for testing, garbage can with bag for priming gun and testing foam.
Everything went pretty well as shown in the video - once the gun was primed and shooting well mixed foam - I started by foaming the gap in the slab, and the contours of the wall openings. I was careful to apply the foam no thicker than recommended - 1" at a pass - to try to optimize the yield of the foam. This meant that I would have to go back and do a second pass.

Foam Application - Perimeter Pass
The kit did not come with any fan nozzles, only the spot nozzles which spray about a 4" wide bead of foam. It took me about an hour and 30 minutes to completely empty a kit - it takes a fair bit of time to do wall coverage with only a 4" wide pass in thin layers.

Completed wall after the second pass.
When the first kit was running low on foam - I noticed air bubbles coming up the line a bit more frequently, and the pressure dropped in the spray. I didn't notice right away that I had completely exhausted the A cylinder. I ended up with about 6 square feed of foam that hadn't mixed properly and wasn't setting, so I had to scrape it out with a paint scraper and then start the second kit to re-apply fresh foam.

Once all was completed, and had cured for a day - I went back and measured my application. I had averaged about 3/4" thick application over about 600 square feet of wall surface, plus about 75 feet long of sealing the gap between the slab and the wall. I figure I got fairly close to the advertised yield of the kit - but in order to achieve 3 inches of cured foam in order for the foam to act as a vapour barrier - I figured I was going to have to purchase another 4 or 5 kits. I was now in the cost territory of having a foam contractor come in, and, I had spend a total of about 6 hours in preparation, application and cleanup in order to do about half of my surface area to about 1/3 the required foam thickness. So - the decision was easy - I was going to get a contractor in to complete the job. I had already hired an insulation contractor during the original renovation to apply spray foam to a window well in my attic, and to blow cellulose into my attic. I called him and set up an appointment for the end of the following week. 

Another issue was that at the end of applying one and a half kits - my eyes were getting irritated. I was limited with how much ventilation I could allow without dropping the air temperature due to the cold weather. I ended up purchasing a full face organic cartridge respirator in order to finish off the second half kit remaining - just to avoid further eye irritation. If you're going to apply one of these large kits indoors - I would highly recommend the full face respirator. 

Image result for 3m full face respirator
3M Full Face Organic Vapour Respirator
In the end - I got a good quality foam that adhered well to the concrete - but I underestimated how labour intensive it was going to be for a large job. I think these kits are ideally suited for smaller jobs - where you need to apply a single kit - such as doing all your rim joists in your basement, for example. Larger jobs - where you're applying to entire wall surfaces - you're probably better off with hiring a professional contractor.

If you are going to apply one of these kits yourself, my biggest recommendation would be to follow the manufacturers application instructions to the letter - application temperatures, work procedures, and so on - to maximize the chance you get a quality result. 

And - don't try to get every last bit of chemical out of the tanks - as soon as you notice a change in the foam output quality - stop, change the foam nozzle so you have a clean applicator, and check the foam by doing another test on scrap material. Any foam that isn't properly mixed will not cure and you'll be scraping it out - not an easy job considering how viscous and sticky the product is. 

An example of improperly mixed foam - the A cylinder had run out, and I had continued applying foam. This foam didn't expand and cure, and stayed wet and sticky, and had to be scraped out, cleaned, and foam reapplied overtop. 
In my next post, I discuss completing the basement job with a contractor, and what we found behind some of the finished basement walls that caused some difficulty - some vertical foundation wall cracks. 




Share:

Eavestrough Repairs and Preventing Downspout Blockages with Gutterstuff

Our latest house is two stories tall, with eavestrough at both levels. It's also situated close to many mature trees, and as I quickly found out, none of the downspouts were clear and working properly. In the summer we get oak seeds (double samaras) - some people call them helicopter seeds, and then in the fall we get leaves - lots of them.
Downspout blocked with tree debris
My first season in the house I tried to alleveiate the problem by installing spherical downspout strainers on all the downspouts. These worked - for about 2 weeks. And then they become completely blocked with leaves and as the leaves rod, they gradually allow infiltration into the downspout. It was definitely not the solution I was looking for.



My second season, I went looking for a better solution. I considered the plastic or aluminum covers that you can purchase, however I was worried about two aspects - i) fit; and ii) performance - would water just sheet off the cover and overrun the eavestrough? It seemed like too much trouble to install, and would be finicky to fit.

I stumbled across a product called Gutterstuff in my local home improvement store - it's a black, open cell foam cut into a triangular shape, which stuffs into your eavetrough gutters making it impossible for helicopter seeds or leaves to get down into the gutter and block your downspouts. It looked like it would work - so I bought half a dozen pieces to try out on my eavestroughs. 

The triangular shape leaves the bottom free for water to flow to the downspout. The top surface is completely closed - preventing any leaves or seeds to get into the downspout. This is the "K Style" Gutterguard. There are other shapes available.

The open cell design allows water to flow through very easily.
Installation is very simple - the pieces are 4 feet long, and stuff underneath the nails or screws that hold your eavestroughs to your eaves. It cuts with scissors, and can be easily fit around corners or odd angles.

Gutterstuff installed in both upper and lower eavestroughs

Transfer spout filters through Gutterstuff before continuing down the next downspout.
So - how does it work? Absolutely great! I haven't been up to clean out gutters by hand in 14 months now, and everything flows perfectly. No more overflowing gutters, no more water soaked brick, no more blocked downspouts. I find that leaves may land and rest on top of the gutters, but not for more than a few hours or a day. As soon as a little bit of wind hits the gutters, the wind will sweep the leaves off the top of the Gutterstuff keeping everything clear. Water sweeps right through the open cell foam, and does not splash or overrun the gutter. So far it's holding up well under the sun with no UV degradation.

If you have a problem with leaves and your eavestroughs, I highly recommend this product, it will work.


Share:

Installing a Temro Battery Warming Blanket in a 2010 E60 / E61 5 Series



In most BMWs, you'll find the battery in the trunk of the car. In the 2010 535xi Touring, it's on the right hand side of the trunk, just behind the right rear wheel well.

Installation of the Temro battery blanket is very simple, and takes about 10 or 15 minutes.

Temro Battery Warmer

There is a gap of approximately 1/2 to 2 inches all around the battery. Installation doesn't require removing any battery cables. I found that removing the upper tray support bar and the rear battery bracket simplified installation.

I used a 36 inch long, 80W model, and it fit about 90% of the circumference of the stock battery.

I oriented the AC power cable to come out between the positive and negative terminals, along the outside of the car. 

Blanket installs between the battery and the hold down bolt, which holds it perfectly in place. 
Check out this post to see how I powered the blanket in parallel with my engine oil pan heater, and trickle charger.
Share:

Wall Acne

I originally posted this on my home automation blog, but since it is more of a drywall / cable management issue I've copied it here to my general maintenance blog as well. This has been one of my pet peeves during the renovation of our last two homes - wall acne. I don't know how widespread this term is, but I use that to describe when you have a bundle of different switches, thermostats, and controls placed haphazardly in the same zone of the house, with no regard for esthetics. A few examples follow.:
Thermostat, 24V Legacy Automation Lighting Control with 8 Switches, Closet Switch. The light switches are aligned horizontally, the thermostat doesn't line up with anything.

Garage Door Controls - Door opener and Legacy 24V Lighting Control. Why doesn't the garage door opener line up either horizontally or vertically?

The problem with wall acne is that it takes time, skill and patience to correct it. In the thermostat example above, I set out to correct the misalignment. There are other posts in this blog which discuss my legacy automation controller and the 24V switches - these have been all changed out for Insteon Switchlinc switches, keypads and dimmers. In this case - I doubled up the wall switch box for the closet light switch to accommodate the Insteon Switchlinc Keypad. The thermostat was moved in line vertically above the light switch and Insteon Keypad, and the new air exchanger control was added above the thermostat.
Doubling up the closet light switch to accommodate the Insteon Keypad.

Thermostat moved to vertical alignment
The completed alignment, Insteon Keypad installed with closet light switch, thermostat and air exchanger controls aligned vertically. 
On to the garage switches. Besides the alignment, I was bothered by the surface run garage door opener wire, and the lack of a thermostat for my two 4000W wall heaters. Running the thermostat wire down through the wall, and incorporating the garage door opener control wires in the wall necessitated a few drywal cutouts to help with fishing the wire past a structural beam.

Aligning the controls with the light switch, and running the wires behind the drywall.

Finished product - Insteon Switchlinc Switch, Thermostat, and Garage Door Opener control all aligned vertically, with wires hidden. 
Maybe I'm a bit fussy about this, but I really don't think so. If some forethought is given to the various trades involved in house construction, and control wires are run behind the drywall during construction (such as the garage door control wires), then this should never be an issue in new construction. But I think the time spent solving the issue is well spent.
Share:

Aluminum Wheel Cleanup

This fall I purchased a second hand set of wheels to use for winter tires for the new station wagon. When I got them - they were quite badly encrusted in brake dust, I'm not sure if the previous owner ever cleaned them. Pressure washer and aluminum wheel cleaning products barely touched the brake dust stains. I then took it up a notch - and scrubbed the wheels with lacquer thinner and used terrycloth towels. That was really effective at removing the brake dust stains from the wheels, but you have to be careful - the lacquer thinner will soften the existing finish, and the fumes are hazardous - chemical gloves and a charcoal organic cartridge mask are a must if you're working indoors.

Once the wheels were clean - a new problem quickly became apparent - spots of oxidation underneath the existing finish - the size of quarters. Several per wheel. Not only that, but oxidation around the wheel rims where the tire bead contacts the rim. This oxidation will eventually cause air leaks and would have to be removed.



I decided not to completely strip the wheels, but to do a repair job and spot refinishing. That consisted of buffing out the oxidized areas with a 2" buffing wheel on a die grinder, and a sandpaper wheel on a dremel for tighter areas.

Next step was to prime the buffed out spots where I removed the oxidation to the bare metal. I used automotive self etching primer, decanted to an airbrush bottle and an airbrush for better control and even application. If you don't have an airbrush, you could mask and spray from the can, or decant and apply the primer with a brush. Here's a photo of the primer used, and the spot priming:



Once the spot priming was done, I decided to paint the interior of the wheel - silver metallic and clear. I did this before painting the fronts of the wheels, so that overspray would be less of a problem. I started by masking off the front of the wheel from the back:


I decided to go with a Lacquer paint system. These wheels were originally painted with Lacquer, so I was confident I'd have good compatibility. Plus - the recoat times with lacquers are extremely flexible - from 15 minutes to any time. From what I've found online, acrylic enamels are becoming more prevalent, probably due to tightening VOC emissions regulations. I went with the recoat flexibility - because with a couple small kids running around, and limited time to dedicate to painting, I could do some several evenings in a row and not have to finish all coats in the same day. I used duplicolor spray lacquer with these wheels - seems to be a very good product. Available at Canadian Tire - about $10 a can. 

Three coats of colour, and three coats of clear - on the inside of the wheels, and the bead surfaces. I did all the coats of colour in one evening, then waited 24 hours, and did the three coats of clear the next evening. After that, it was on to the fronts of the wheels. 

On the fronts of the wheels I gave up on the spot repair also. Since they are winter wheels, I didn't dedicate much time to level out the areas where I sanded - I just feathered the clearcoat back some so that the edges wouldn't be too jagged. I also sanded all surfaces to roughen them for paint adhesion. Since I was worried about the etching primer raising existing paint, I used a sandable primer over the existing finish (photo above). This sandable primer was a bit darker than I expected, I was hoping to keep everything light so that dings and scratches won't show through. By the way - I picked up the Rustoleum spray can trigger at home depot - this is the way to go. Each set of wheels took about one can of primer, three cans of colour, and two to three cans of clear. 
The finish turned out good - I applied colour about half an hour after the primer, and three coats about 15 minutes apart. Waited a day, and onto the clear. 


On two of the wheels, I applied the clear a bit too thick, and the solvents in the clear lacquer redissolved some of the colour layer. Once that happens, you pretty well have to start over. You can wipe clean with lacquer thinner and restart. I was pressed for time and just left it as is - not too noticeable, especially on wheels that will be crusted in salt most of the winter. 

I'll do another post on my outback wheels - which I stripped down to the aluminum using paint thinner. Those wheels turned out a bit better than these, and it didn't take any more time to strip the wheels down, compared to all the time spend cleaning, wiping with lacquer thinner, and sanding these wheels. If I was going to do it again, I would just strip them completely before starting...


Share: