Showing posts with label Electrical. Show all posts
Showing posts with label Electrical. Show all posts

Running the Ecotech EZ Variable Speed Pool Pump Motor - GFCI Breaker Issues and Resolution

I've been upgrading my pool pump system with a variable speed motor from Emerson / Nidec / US Motors - the 3HP Ecotech EZ motor. I've described installing the motor on the pump, and the upgrade of the pool piping from 1 1/2" diameter to 2" diameter for better flow and lower restriction.

Ecotech EZ Variable Speed Motor installed on the Jacuzzi Magnum 1500 Pool Pump
The night that I finished the last of the 2" piping was when I reinstalled the salt chlorination cell. Then it was time to start up the pump for first time. Power on - then 2 seconds later the GFCI breaker feeding the sub panel in the pool shack tripped, and an error message appeared on the motor's LCD screen - blocked pump. The motor has a protection feature if the impellor gets blocked - it will prevent the motor from forcing against a blockage. I reset the breaker and tried a few times to get the pump running - then realized that I had installed the motor adapter plate backwards - jamming the impellor against the seal plate. So - 11:30 at night, and I pulled the motor from the pump and flipped the adapter plate, reassembled the pump and......the GFCI breaker still trips - but I no longer have the blocked pump error message on the variable speed control panel.

Ecotech EZ Motor Control Panel
The manual for the Ecotech EZ pool pump motor very clearly states that if you want the motor protected by a GFCI breaker, the pump must be installed on a dedicated GFCI circuit, not shared with other electrical loads. This posed a problem with my electrical system - my pool shack sub panel has 6 circuits - 4 15A lighting and power outlet circuits - one of which is the pool lights, and two 2-pole 240V circuits - one for the thermopump heater and one for the pool pump. When I moved into this house 3 years ago - only the pool light circuit was protected with a GFCI breaker. So - to upgrade the protection for the most economical cost - I protected the entire sub-panel from the feed from the house panel with a 40A 2 pole 240V GFCI breaker. The implication  of the requirement to have the Ecotech motor on its own dedicated GFCI circuit was to remove the GFCI breaker from the panel feeding the sub panel, and convert all the breakers on the sub-panel to GFCI breakers - an expensive upgrade. To try to avoid all this - I tried to get the pump to work with the GFCI breaker on the house panel - but even removing all the other loads on the sub-panel was causing the feeder GFCI breaker to trip every time I tried to start the motor. 

Ecotech EZ Motor Upgrade on Jacuzzi Magnum 1500 pump - with 2" plumbing upgrade
To get the motor running - I removed the GFCI breaker from the sub-panel feed. It started and ran fine, but with no GFCI protection. When anyone went near the pool, I shut off all the breakers on the sub-panel for safety, but this wasn't practical as a permanent solution. Incidentally - I did some research on other variable speed pool pumps - such as the Pentair Intelliflo pump - and it's installation manual also requires a dedicated circuit if the pump is to be protected with a GFCI breaker. 

I had two 15A single pole GFCI breakers from the original installation, which I put back into the sub-panel. Then I purchased a single 2 pole 20A GFCI breaker for the pool pump circuit. I installed this on the sub-panel, and it worked fine. Then I installed a second 2 pole 20A GFCI breaker for the thermopump. 

The point of this whole discussion is to warn anyone considering this variable speed pump upgrade that there may be electrical implications beyond just swapping the motor. Also - it's important to state that you should have this electrical work performed by a licensed electrician - or have a licensed electrician inspect your handywork if you decide to do this yourself. You want to ensure that the electrical systems are safely installed and will protect your family and friends from an electrical fault.

One other issue that I've run into is that I had my salt chlorination cell transformer wired with my pool pump motor - but I've had to separate the circuits in order to get the GFCI breaker for the pool pump to work. Also - the pump needs to be powered on all the time - the pump timing is now controlled by the intelligent controller on the motor, and not my central pool automation system. So I've decided to control just the salt chlorination cell from my central pool automation system - I'll program it to run on a function based on the length of daylight since chlorine degradation is a function of sunlight - and run the pool pump separately using the timer on the motor controller. I still have some wiring to get this up and running - if I run into anything interesting - I may do a separate post on this.

Once I got the electrical issues sorted out, the pump has been running now for about 2 weeks. I did some testing to check the current draw on the pump at various pump flows. The control panel modifies the pump speed as percentage of flow, and not as percentage of speed changes. Since the pump runs with a single set of programming from the factory, and every pump installation will be different with its own piping head - the percentage of flow settings on the motor will only be approximate on any system. 


What's interesting about this graph is that I can run at 75% flow consuming only about half of the full speed motor current, or I can run at 60% flow consuming only about a third of the full speed current. I wish I had taken the motor current measurement of the original single speed motor on the Jacuzzi Magnum pump - this new permanent magnet motor should be much more efficient at full speed. For the past two weeks I've been running the pump 24 hours per day, at 50% speed consuming less than 1 Amp of current. At this speed the sand filter backpressure is only about 3 psi - the power savings are impressive, and the filtration is very effective - water is crystal clear and my salt cell is performing well.

Measuring power draw of the Ecotech EZ motor using the Klein CL1000 clamp meter
Another feature of the variable speed motor is to be able to fine tune the motor speed to your vacuum and vacuum hose length, to avoid cavitation of the motor. On my previous setup with the single speed motor - the motor would cavitate whenever I was vacuuming. This would cause the pump to periodically lose prime, and suction on the vacuum. In addition, whenever I was vacuuming to waste early in the season to rid the pool of dead algae, the single speed pump was always running at full speed and drawing down the water level very rapidly. Now I can vacuum to waste at 40% flow - greatly reduce the loss of water and increase the time that I have to vacuum more effectively. I also expect that I'll be able to tune the motor to the barracuda automatic vacuum for peak performance, without using the bypass valve. 

Ecotech EZ Motor - Timer Controller is mounted directly on the motor housing
So - with the exception of the surprise expense on the GFCI breaker upgrade on my sub-panel - I'm very satisfied with this pump motor upgrade. My pump running at 50% flow is very quiet - I can't hear the motor at all outside the pool shack, and my neighbor's pool pump makes more noise now than my own. One other thing that I like a lot about this upgrade is the performance of the Jandy multiport valves - much easier to actuate by hand, nice clean looking installation. This is a positive upgrade - and I hope to see the results on my electricity bill at the end of the summer. 

Share:

Ecotech EZ Variable Speed Pool Pump Motor - Pump Installation and Piping Upgrades

Now that the pump is assembled with the new Ecotech EZ variable speed motor, it was time to get at the piping upgrades to help improve the overall system efficiency. I had a few serious weaknesses in my pool piping, particularly on the suction of the pool pump, and the piping feeding and exiting the thermopump.

Jacuzzi Magnum 1500 upgraded with Ecotech EZ Variable Speed Motor, Suction Side Piping Completed with 2 Jandy Valves
The existing pump piping layout wasn't very well done - it wasn't particularly efficient, and probably contributed to the pump cavitating any time the vacuum port was used. Note the vacuum port routing - which enters from the top right - 90 degree elbow, ball valve, 270 degree sweep, 90 degree elbow down into a T fitting, then off to the pump suction. All lines are 1 1/2" - so even if you decide to draw from the drain and the skimmer at the same time, you're contstrained by the 1 1/2" suction on the pump.

Old pump suction layout - skimmer bottom left, bottom drain top left, vacuum port top right, pump suction bottom right. 
I have 1 1/2" black poly pipe running underground to the pool. I'm not a huge fan of the insert barbed fittings - they're common for these applications but they neck the diameter down to 1 1/4 inch. I thought I would give a polyethelene epoxy adhesive a try, to convert to PVC fittings, made by TAP plastics in California.

Black poly lines moved to desired alignment, fixed with copper strapping. CPVC reducing slip elbows - 1 1/2" to 2" - fixed to the black poly line using TAP plastics poly epoxy.
I also converted the 1 1/2" poly lines to 2" at the 90 degree elbows where I made the transition from vertical to horizontal. See photo above. Once my suction lines were horizontal, I plotted the position of two Jandy 3 way valves facing each other, to allow me full flexibility in selecting and mixing the pump suction source. I used the 2 / 2 1/2" Jandy Valves to minimize restriction in the suction piping.

Suction side piping completed - Jandy Valves control suction source - skimmer, bottom drain, or vacuum port. 2" union fittings on the suction and discharge of the Jacuzzi Magnum pump. 
With the suction side piping completed - I then working on the transitions at the sand filter. I spent some time looking for a sand filter with a 2" multiport valve - mine was just a 1 1/2" multiport valve, and eventually decided just to keep the 1 1/2" valve. With the variable speed pump - the system would in the future be spending most of the time operating at a low flow speed, which would minimize the impact of the system restriction of the 1 1/2" multiport valve.

Jaccuzzi Multiport Sand Filter Valve Piping - 1 1/2" drain fitting on the close side, 2" rigid pipe discharging to the thermopump and salt cell on the far side. Pump discharge - sand filter feed line in the center. Unions on all connections. 
With the sand filter piped, it was time to work on the thermopump. The former layout had the thermopump piping side facing away from the pool shack, and 90 degrees away from the pool. In order to make the connections, about 30' of 1 1/2" hose made long circular connections between the sand filter and the salt cell.

The old Thermopump Installation - About 30' of 1 1/2" hose separates the Sand Filter from the connection to the underground hose where the Salt Cell will be attached to

The old Thermopump Installation - About 30' of 1 1/2" hose separates the Sand Filter from the connection to the underground hose where the Salt Cell will be attached to - right side of photo.
I moved the thermopump so that the piping connections would be facing the pool, and perpendicular to the pool shack, and then came up with a layout using the Jandy 3 way valves to control bypass and flow to the thermopump. 

The Thermopump was previously installed on the patio stones to the right. It's now moved into place next to the pool shack, just behind the outlet pipe for the pool jets. 

Jandy Valves will provide flow modulation and bypass isolation for the thermopump, with a much more compact piping arrangement.
Now, instead of 30' of 1 1/2" pipe between the sand filter and the salt cell, I'm down to about 10' of 2" pipe

Conclusions

I'm quite happy with the new piping arrangement and the upgrade to 2" piping. The only section of 1 1/2" pipe which remains is the section about 35' long between the salt cell and the first jet on the pool. I don't think I'll get the energy to make that upgrade for a while because of the trenching, so I'll wait until the pool requires major maintenance.

At this point, it was time to start the new variable speed motor - more on my next post.

Sources and Links

I hope you found this post useful. Feel free to ask questions in the comments section below. I answer all questions.

Share:

Ecotech EZ Variable Speed Pool Pump Motor Upgrade - Jacuzzi Magnum Pump

I've been working towards the goal of reducing my electricity bill by 33% - and I'm actually getting there. One of the largest loads besides heating and ventilation at my house is the pool pump. I have a typical single speed 1.5 HP Jacuzzi Magnum pool pump for an 18' x 36" rectangular in-ground pool. I like to open the pool early and close it late, and the kids love to swim. My estimates for running the Jacuzzi Magnum pump was around $500 / pool season full time. I've been running the pump on a time, for about 12 hours / day - so I guess I've actually been consuming around $300 per year in electricity. Thankfully, my marginal electricity cost is only about $0.095/kW-hr.

Ecotech EZ Motor installed on the Jacuzzi Magnum 1500 Pool Pump. The control panel is directly on top of the motor.
Last year I did a fair amount of research on the subject. and the key to saving electricity with a pool is to take advantage of pumping affinity law - which simply means that increasing the flow by 10% costs you 33% more in power. Similarly, reducing the flow by 25% will result in energy savings of approximately 50% - due to the reduction in friction losses by reducing the speed of the water in the piping (and importantly, across your filter element).

You can do this with multi-speed pumps - which can be standard wound-rotor pumps with a two or three speed tap - which will result in some savings, or even more significantly, with a electronically commutated permanent magnet variable speed motor, which are the most efficient commercially available motors. To take advantage of this simple principle, the state of California has mandated that new pool installations have as a minimum multi-speed pumps which default to low speed operation for filtration (California Energy Commission (CEC) Title 20 Appliance Efficiency Regulations).

My pool is probably a fairly typical installation for a 20 year old pool in the Province of Quebec - all the piping is 1 1/2 inches in diameter, and I have a 1.5 HP single speed motor, with a sand filter with a 1 1/2 inch multiport valve. My thermopump was added following the original pool installation - and it would have been difficult to imagine a less efficient plumbing addition to a system - to add the Thermopump - the pipe from the sand filter to the pool was extended by about 30 feet long in total - 1 1/2" piping - in a long serpentine.

So why upgrade just the motor, and not purchase a complete new pump? Because if you already have a decent pump - the motor will end up costing about 50% of the cost of a complete pump. If you're a bit handy, this isn't a particularly difficult upgrade. The hardest part may be the electrical part - and if you're switching the complete pump out - you'll need to deal with that anyway. My aim going into this upgrade is that the cost for the upgrade would be paid back within 2 years, and purchasing a complete new pump would not allow me to achieve that.

Starting point - Jacuzzi Magnum Pump with Single Speed, Permanent Split Capacitor Motor
So - to take best advantage of the variable speed motor upgrade, I also planned to upgrade as much of my piping as possible to 2" diameter, and relocate my thermopump to optimize the piping arrangement. I also planned to remove and replace all my 1 1/2" ball valves with 2 inch Jandy multiport valves - to simplify the plumbing and minimize the number of bends in the piping.

The first step in the project was to split the original single speed motor from the pump, and install the Ecotech EZ motor. This isn't terribly difficult to do, and it is also an excellent opportunity to replace your pump seal. The basic steps are as follows:
  • remove the pump from your system and disconnect the power;
  • split the pump from the motor by unscrewing the clamp ring between the motor and the pump;
  • unscrew the 2 screws retaining the diffuser, and lift the diffuser off;
  • unscrew the impeller by holding the motor end of the drive shaft, and unscrewing the impellor counter clockwise; 
  • lift off the seal housing (now is the time you would replace the motor shaft seals); 
  • unbolt the motor housing bracket (four bolts)
Preparing the Motor Housing Bracket for installation on the new Ecotech Motor
Note the clamp ring installed over the motor, with the seal plate installed over the motor housing bracket and motor shaft
Installing the impeller
Installation of the new motor is the reverse of the steps above, I won't go into details, there's quite a few good videos available explaining seal replacement on all types of pool pumps. Just ensure you take very clear note of the orientation of all parts during disassembly - photos will help. And - make sure you install the clamp ring right from the start - otherwise you'll be doing all the steps twice....

The Ecotech EZ motor installed on the Jacuzzi Magnum 1500 Pump - Ready to Install on the Pool
I'll write a separate post on the piping upgrade around the pump, sand filter and thermopump, Following that, I'll post about wiring up the new pump, the electrical considerations, power draw of the new motor, and the performance of the system. It's getting a bit too late to finish everything tonight.






Share:

Replacing a Battery Terminal Clamp on a Subaru Outback 2006

It came time to replace the battery on my 2006 Subaru Outback wagon. 8 years, 150,000 km travelled, and still working with the stock battery. Not bad. A few incidents this winter - leaving an interior light on for a few hours, and having problems starting the car led me to Costco for a very reasonably priced replacement Kirkland battery (very highly rated by Consumer Reports).

Replacing the battery was fairly easy and straightforward, I won't go into that here. But when it was time to tighten up the original battery clamp - there was no way I could get it to bind tight to the new battery post.

8 years life on this battery clamp - finished. Time for a replacement.
So, of course when your doing something on the weekend, there isn't an option to run to the dealer to get a replacement OEM battery clamp, and I wanted to get everything sorted out properly without wasting any more time. There are two cables which attach to this clamp on the vertical post on the clamp - pretty well identical to a standard marine terminal. So, off to Canadian Tire for a marine terminal.
Catalog photo - Canadian Tire Marine Battery Terminal - $5.99 each
This ended up being about a 10 minute job once I had the part. The metal of this clamp is soft and malleable - allows you to get a perfect fit on the battery terminal, without any gaps. Will result in excellent conductivity and low resistance. 
 Use a set of pliers to shape the terminal to the battery post
Install the cables using the provided wing nut, make sure everything is snug. Take care tightening the clamp bolt - the metal is quite soft.

A good coating of vaseline to protect the terminal from corrosion. You can also use a spray on producet for this purpose. 

And replace the insulating cover - this helps prevent a short in case of the hood contacting the battery in a collision.
10 minute job, and perfect conductivity. No issues with charging or starting, all good.








Share:

Installing a 12V Battery Trickle Charger in the BMW E60 / E61 5 Series - Trunk Mount at Battery

Last weekend I did a winter maintenance hat trick on my 2010 BMW 535xi Touring. I installed an oil pan heating pad, a battery warming blanket, and an 1.1 Amp trickle charger.

I made a quick trip to Canadian Tire and decided on the NOCO Genius G1100. Noco also makes another model with better environmental protection designed to be installed semi-permanently in the vehicle. However I decided I'd try this one - reasonably priced about $60.

Noco Genius G1100 1.1 Amp Trickle Charger

IP 65 rating should mean that this charger is splash proof and dust proof. 
Installation of the harness directly to the car was simple. There is a grounding post direcly on the rear fender, where I installed the negative (black) ring terminal under the OEM hold down bolt.

Black negative cable installs to ground lug on right rear fender - with other car electrical grounds. 
The positive connection was also simple, underneath a bolt in the rear fuse box where the positive battery cable connects to an aluminum bus plate. 

Positive connection on the bus plate in the rear fuse panel, where the batttery cable attaches. There is a black plastic cover for this bolt - which I reinstalled after testing the connection. 
The trickle charger will normally bring the battery back to 100% charger overnight. It's a nice charger - auto voltage sensing, senses the battery is an AGM glass mat battery, and switches off when it reaches full charge. 

I made all the electrical connections and installed the charger in the plastic tray above the battery - and grounded the 110V electrical extension cable ground wire to the body of the car (green wire). This way - if line or neutral ever shorts to sheet metal, it will trip the breaker in the house before presenting a shock hazard to someone touching the car. 

Note green ground wire - grounding the 110V extension cord to the car body ground for safety.

Noco Genius G1100 chager installed in the tray above the battery. The other connections are for the battery blanket warmer, and the oil pan heater. 

I ran the electrical feed through a small hole in the battery box, underneath the car out underneath the rear fairing. This way - it is quick and easy to connect power without having to open the hood or the trunk - quick and easy. When not in use, the cord tucks in above the fairing and is protected from road salt and splashing. 
Works great - quick starts in the morning on very cold days, and no battery issues.




Share:

Installing a Temro Battery Warming Blanket in a 2010 E60 / E61 5 Series



In most BMWs, you'll find the battery in the trunk of the car. In the 2010 535xi Touring, it's on the right hand side of the trunk, just behind the right rear wheel well.

Installation of the Temro battery blanket is very simple, and takes about 10 or 15 minutes.

Temro Battery Warmer

There is a gap of approximately 1/2 to 2 inches all around the battery. Installation doesn't require removing any battery cables. I found that removing the upper tray support bar and the rear battery bracket simplified installation.

I used a 36 inch long, 80W model, and it fit about 90% of the circumference of the stock battery.

I oriented the AC power cable to come out between the positive and negative terminals, along the outside of the car. 

Blanket installs between the battery and the hold down bolt, which holds it perfectly in place. 
Check out this post to see how I powered the blanket in parallel with my engine oil pan heater, and trickle charger.
Share:

Installing a Polar Pad Engine Oil Pan Heater on a 2010 E61 BMW 5 Series

I was pretty surprised when I learned there is no block heater option on the E60 / E61 BMW 5 Series - these engines use a wide temperature range synthetic oil to keep the viscosity of the motor oil low even in very low temperatures. Nonetheless, after a cold overnight soak at -20 C / -5 F means that the engine will crank for 3 or 4 seconds before the oil pressure builds and the engine fires.

Ultimately it was the known issue with these cars of difficulty producing heat in cold temperatures that pushed me to do something about engine block heating. When I leave the car outside overnight in very cold temperatures, I want it to fire quickly, use the least amount of energy possible from the battery to help prevent the electrical system from going into a preservation mode and shedding non-essential loads - in this case - the ventilation fan motor. See my other post here regarding the ventilation system not producing heat.

Canadian Tire sells an engine heater that sticks onto the oil pan and sends its heat directly into the motor oil, call the Polar Pad. I originally purchased the 250 Watt model, with approximate dimensions of 5.2 inches by 3.5 inches, shown below:

Polar Pad Model CP512 250W Engine Heater Kit - The self adhesive heat pad, sandpaper, silicone aluminum sealant, and a few zip ties.  
The next step in the process was to find a place to install the heating pad. The E60 / E61 5 Series BMW has underbody aerodynamic covers just about everywhere under the car, except in proximity of the exhaust, fuel tank and rear suspension. In order to get access to the oil pan, the car has to be jacked, placed on jack stands, and then the front and front center underbody pads removed. This isn't too difficult to do, but you do need to get the car in the air. Of course - if you attempt to put the car up on jack stands - make sure you know what your doing, and that you double check the stability of the car on the jack stands. Whenever I work under the car - I'll normally put a second pair of jack stands close to where I'm working for a bit of extra safety.

There is a jacking point directly underneath the engine on the main crossmember - which protrudes through a hole in the underbody cover - it's very easy to find, and solid enough for jacking. 

Jacking the E60 / E61 directly under the motor on the engine crossmember jacking point.

Once the car is in the air, on jack stands, this is the view of the underside of the engine from the front. Note there is an aluminum skidplate / stiffening plate underneath the engine oil pan behind the main crossmember / sway bar that will need to be removed in order to give good access to the oil pan. It is held on with 6 8mm bolts - an air impact makes this an easy removal. 

Underbody cover from directly underneath engine. Note oil crud and salt. This cleaned up fairly nicely with some comet and a floor broom. 

Aluminum skidplate / stiffener plate from underneath engine / oil pan. 

Selected mounting location for the polar pad engine heater. In the photo, just behind the sway bar is the steering mechanism. Just behind the steering mechanism is the oil pan - note the drain plug. The oil pan is pretty complicated with the front differential on the X drive model on the righ, and the driveshaft for the right front wheel runs through the oil pan. The only suitable flat surface is vertical between the steering rack and the oil drain plug. 

Comet and some water cleans up the skid plate / stiffening plate quite nicely. 

Setting out the underbody covers to drip dry following cleaning.

Underbody covers - cleaned.
When I went to fit the 250W polar pad, I found it was too large for the only available flat space. Back to the auto parts store for the 125W model, which is about half the size of the 250W model.


Packaging for the 125W and 250W models of the Polar Pad.

125W and 250W Polar Pad sizes compared. 
Now, with the correct size Polar Pad - installation is fairly straightforward. Sand down the mounting location to smooth metal, remove any paint or oxidation.

Mounting location sanded down, ready for application of the Polar Pad
With the mounting location ready, I used a heat gun to heat up the metal surface of the oil pan, and followed the instructions to heat the polar pad for 15 seconds by plugging it in, then removing the protective backing and applying it to the oil pan.


Polar Pad stuck into place with its adhesive backing.
 The next step is to seal around the edges of the polar pad with the supplied silicone aluminum high temperature sealant.

Edges sealed with high temperature sealant.
Polar Pad intstalled.
With the polar pad installed, the sealant is left to harden while the electrical cable is routed. I decided to run an extension cord to the back of the car, into the trunk next to the battery, so that my connections for my trickle charger, battery warming blanket and engine heater are all in one place.
Zip tying the electrical cables to the underframe. Careful not to route the cables where it will interfere with the skid plate once replaced. 

I ran the extension cord to the back of the car alongside the positive battery cable. This way I was sure that I was far enough away from the exhaust not to worry about melting the cable.  
The junction between the cord of the Polar Pad and the extension cord. I coated the connection in silicone electrical insulating compound before taping the connection with electrical tape, to ensure no water would be able to enter the plugged joint. 
Taping the extionsion cord connection between the extension cord and the Polar Pad.This connection is then zip tied to the bottom of the frame.
Once I got to the gas tank along the factory battery cable routing, the battery cable runs up underneath the gas tank, and then underneath the rear suspension. I found it impractical to try to run the extension between the gas tank and the body floor, so instead there was a good route along the top of the suspension brace that runs underneath the gas tank. From the rear side of the gas tank, there is a good route to meet up with the battery cable again and run between the rear suspension and the body. Before getting too close to the exhaust, I ran the extension back into the trunk where the battery cable runs. Note this a wagon, I can't tell you if the sedan is similar or not. 

Cable runs into the trunk, next to where the battery cable runs into the trunk. Cable runs through a grommet to protect the cable from vibration and wear. 
Note the extension cable in yellow, running into the trunk next to the battery cable. 
Once at the back of the car - the cable meets up above the battery for simple connection with the battery warming blanket and the trickle charger. 
Electrical cables in the storage compartment above the battery, ready for connection.

Conclusion

So - how does the Polar Pad engine heater work? In a word - brilliant. -20 C / -5 F starts are just like they are in normal warm weather, the engine cranks much quicker, and fires in a second or two. Much less work for the starter. The ventilation fan in Auto mode starts blowing air in about 2 or 3 minutes after pulling away - which seems to be a big improvement. This work took the better part of a Saturday, but now I'm happy it's done and hope this will pay off in reduced engine wear and longer life for the car. If you have any questions - just leave a comment below and I'll try to get back to you quickly.

Sources and Links

I hope you found this post useful. Feel free to ask questions in the comments section below. I answer all questions.
Share: